We use these services and cookies to improve your user experience. You may opt out if you wish, however, this may limit some features on this site.

Please see our statement on Data Privacy.

Zendesk (Helpdesk and Chat)
Bugpilot (Bug tracking)

Ok

THREATINT CVE Home CVE Diag Help
PUBLISHED

CVE-2024-26687

xen/events: close evtchn after mapping cleanup

Reserved:2024-02-19
Published:2024-04-03
Updated:2024-04-13

Description

In the Linux kernel, the following vulnerability has been resolved: xen/events: close evtchn after mapping cleanup shutdown_pirq and startup_pirq are not taking the irq_mapping_update_lock because they can't due to lock inversion. Both are called with the irq_desc->lock being taking. The lock order, however, is first irq_mapping_update_lock and then irq_desc->lock. This opens multiple races: - shutdown_pirq can be interrupted by a function that allocates an event channel: CPU0 CPU1 shutdown_pirq { xen_evtchn_close(e) __startup_pirq { EVTCHNOP_bind_pirq -> returns just freed evtchn e set_evtchn_to_irq(e, irq) } xen_irq_info_cleanup() { set_evtchn_to_irq(e, -1) } } Assume here event channel e refers here to the same event channel number. After this race the evtchn_to_irq mapping for e is invalid (-1). - __startup_pirq races with __unbind_from_irq in a similar way. Because __startup_pirq doesn't take irq_mapping_update_lock it can grab the evtchn that __unbind_from_irq is currently freeing and cleaning up. In this case even though the event channel is allocated, its mapping can be unset in evtchn_to_irq. The fix is to first cleanup the mappings and then close the event channel. In this way, when an event channel gets allocated it's potential previous evtchn_to_irq mappings are guaranteed to be unset already. This is also the reverse order of the allocation where first the event channel is allocated and then the mappings are setup. On a 5.10 kernel prior to commit 3fcdaf3d7634 ("xen/events: modify internal [un]bind interfaces"), we hit a BUG like the following during probing of NVMe devices. The issue is that during nvme_setup_io_queues, pci_free_irq is called for every device which results in a call to shutdown_pirq. With many nvme devices it's therefore likely to hit this race during boot because there will be multiple calls to shutdown_pirq and startup_pirq are running potentially in parallel. ------------[ cut here ]------------ blkfront: xvda: barrier or flush: disabled; persistent grants: enabled; indirect descriptors: enabled; bounce buffer: enabled kernel BUG at drivers/xen/events/events_base.c:499! invalid opcode: 0000 [#1] SMP PTI CPU: 44 PID: 375 Comm: kworker/u257:23 Not tainted 5.10.201-191.748.amzn2.x86_64 #1 Hardware name: Xen HVM domU, BIOS 4.11.amazon 08/24/2006 Workqueue: nvme-reset-wq nvme_reset_work RIP: 0010:bind_evtchn_to_cpu+0xdf/0xf0 Code: 5d 41 5e c3 cc cc cc cc 44 89 f7 e8 2b 55 ad ff 49 89 c5 48 85 c0 0f 84 64 ff ff ff 4c 8b 68 30 41 83 fe ff 0f 85 60 ff ff ff <0f> 0b 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 0f 1f 44 00 00 RSP: 0000:ffffc9000d533b08 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000006 RDX: 0000000000000028 RSI: 00000000ffffffff RDI: 00000000ffffffff RBP: ffff888107419680 R08: 0000000000000000 R09: ffffffff82d72b00 R10: 0000000000000000 R11: 0000000000000000 R12: 00000000000001ed R13: 0000000000000000 R14: 00000000ffffffff R15: 0000000000000002 FS: 0000000000000000(0000) GS:ffff88bc8b500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000002610001 CR4: 00000000001706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? show_trace_log_lvl+0x1c1/0x2d9 ? show_trace_log_lvl+0x1c1/0x2d9 ? set_affinity_irq+0xdc/0x1c0 ? __die_body.cold+0x8/0xd ? die+0x2b/0x50 ? do_trap+0x90/0x110 ? bind_evtchn_to_cpu+0xdf/0xf0 ? do_error_trap+0x65/0x80 ? bind_evtchn_to_cpu+0xdf/0xf0 ? exc_invalid_op+0x4e/0x70 ? bind_evtchn_to_cpu+0xdf/0xf0 ? asm_exc_invalid_op+0x12/0x20 ? bind_evtchn_to_cpu+0xdf/0x ---truncated---

Product status

Default status
unaffected

d46a78b05c0e before 9470f5b2503c
affected

d46a78b05c0e before 0fc88aeb2e32
affected

d46a78b05c0e before ea592baf9e41
affected

d46a78b05c0e before 585a344af6bc
affected

d46a78b05c0e before 20980195ec8d
affected

d46a78b05c0e before 9be71aa12afa
affected

d46a78b05c0e before fa765c4b4aed
affected

Default status
affected

2.6.37
affected

Any version before 2.6.37
unaffected

5.4.274
unaffected

5.10.215
unaffected

5.15.154
unaffected

6.1.81
unaffected

6.6.19
unaffected

6.7.6
unaffected

6.8
unaffected

References

https://git.kernel.org/stable/c/9470f5b2503cae994098dea9682aee15b313fa44

https://git.kernel.org/stable/c/0fc88aeb2e32b76db3fe6a624b8333dbe621b8fd

https://git.kernel.org/stable/c/ea592baf9e41779fe9a0424c03dd2f324feca3b3

https://git.kernel.org/stable/c/585a344af6bcac222608a158fc2830ff02712af5

https://git.kernel.org/stable/c/20980195ec8d2e41653800c45c8c367fa1b1f2b4

https://git.kernel.org/stable/c/9be71aa12afa91dfe457b3fb4a444c42b1ee036b

https://git.kernel.org/stable/c/fa765c4b4aed2d64266b694520ecb025c862c5a9

cve.org CVE-2024-26687

nvd.nist.gov CVE-2024-26687

Download JSON

Share this page
https://cve.threatint.com/CVE/CVE-2024-26687